SRIMfit Users Manual

Update Log :

2018.10/22 ver 3.01.03E English edition

SRIMfit Users Manual

Contents

- SRIMfit User I/F
- SRIM-2013 data book (MySRIMwb.xlsx)
- Function help message
- Function list
- List (1) Fundamental functions
- List (2a) Combination functions
- List (2b) Combination functions for Gas target
- How to prepare MySRIMwb

SRIMfit User I/F

SRIMfit is a macro function library for MS-Excel which calculate range, stopping power and energy loss of ions in a matter. The function reads a stopping/range table provided by SRIM$2013{ }^{1)}$ and returns a fitted result at a certain energy.

> "SRIMfit.xlam" is macro-function libraries corded by using Excel Visual Basic.
> "MySRIMwb.xlsx" is stopping/range data tables provided by SRIM-2013 code.
$>$ SRIMfit modules are installed as an Excel "system Add-In macro" function
All SRIMfit functions are named as "sr** ()". For example, the range calculation function named srE2Rng() needs two parameters; Energy of the beam and WSnm in order to specify the combination of beam nuclide and target material. The function retrieves the SRIM data book using the specified WSnm, then reads its stopping/range table and calculates range at a specified energy using a simple linear interpolation. Finally, the calculated range-value is returned to user's spread sheet.
> "SRIMfit.xlam" provides about 80 functions.
> "MySRIMwb.xlsx" can include many work-sheets. The name of the work-sheet (WSnm) can be defined as "BeamNuclide_TargetMaterial", for example, "srim40Ar_Si".

In this manner, one function can calculate many combinations of beam and target, just changing the WSnm parameter.

Operating environment:
MS-Excel later than ver. 2003 running on
MS-Windows OS later than XP or MacOS ${ }^{(*)}$
${ }^{(*)}$ MacOS 10.14 + Excel for Mac 2016 has been tested.

Ref.) 1) J.F. Ziegler, SRIM-2013 code home page; http://srim.org/

SRIM-2013 data book (MySRIMwb.xlsx)

In a work sheet named "srim40Ar_Kapton", the values in yellow cells are all copied from the stopping/range table provided by SRIM code. The format of the work sheet is strictly defined in the macro code. Not only E vs. Range table, but also dE/dX and straggling table and all other information are included in this sheet. That is to say, this one work sheet has object data structure which includes all calculation conditions and results using SRIM code.
> "MySRIMwb.xlsx" data-base file should be prepared manually as users own purpose. e.g.) combination of beams (Ar, Kr and Xe) times combination of targets (Kapton, Mylar, Air, Plastic scintillator, Al and Si) makes 18 data sheets should be prepared in advance by using SRIM-2013 code.
$>$ A macro utility "srOut2Ws.xlsm" helps you to convert a SRIM-2013 output.txt file to "MySRIMwb.xlsx" work-sheet format.

The nickname "SRIMfit" is named as "macro function library for fitting SRIM-2013 like output". You may be noticed, as long as the format of the data-base sheet is identical, you can use not only the SRIM output but can use any stopping/range table provided by other codes.

\checkmark	f_{x}	$=$				
C	D	E	F	G	H	I
	Insert Function					

=srEnew("srim40Ar_Si",95,100)
Search for a function:

Select a function:

| SrEImNm |
| :--- | :--- |
| srEnew |
| srenew_eq_Eold
 srenew_eq_EoldGas
 srEnew_eq_Th
 srEnew_eq_ThGas
 srEnewGas |

srEnew(WS, E0,Tum)
This function returns "new" ion $\mathrm{E}[\mathrm{MeV} / \mathrm{u}]$ through a Target material.

This function returns "new" ion $\mathrm{E}[\mathrm{MeV} / \mathrm{u}]$ through a Target material.
Tum indicates Thickness [um] of Target.

Almost every function requires WSname argument to specify a retrieval data sheet.

Function help messages are available.

- Click "fx" insert function icon
- Category $=$ "SRIMfit"

Then you can see a list of SRIMfit functions.

Unit system for function arguments.

- Beam Energy [MeV/u]
- Range, Straggling [$\mu \mathrm{m}$]
- Thickness [$\mu \mathrm{m}]$ or $[\mathrm{mm}]$ for Gas target
- LET (dE/dX) $\quad[\mathrm{MeV} /(\mathrm{mg} / \mathrm{cm} 2)]$ as default.

Unit conversion

- $[\mathrm{MeV} / \mathrm{u}]=\mathrm{E}[\mathrm{MeV}] /$ srInfoIonA(WSname)
- $[\mu \mathrm{m}]=\operatorname{srmg} 2 \mathrm{um}($ WSname, $T[\mathrm{mg} / \mathrm{cm} 2]),[\mathrm{mg} / \mathrm{cm} 2]=\operatorname{srum} 2 \mathrm{mg}($ WSname, $T[\mu \mathrm{~m}])$
- For the unit of LET (dE/dX), SRIM-2013 supports eight kinds of unit system. The "Uid = $0 . .8$ " argument specify the unit system.
This function returns $\mathrm{E}[\mathrm{MeV} / \mathrm{u}]$-> $\mathrm{LET}: \mathrm{dE} / \mathrm{dX}($ Total $=\mathrm{Elec}+\mathrm{Nucl})$ in the unit of Uid.

unitID	Cnv. Factor		
1	$2.32 \mathrm{E}+01$	$\mathrm{eV} /$ Angstrom	
2	$2.32 \mathrm{E}+02$	$\mathrm{keV} /$ micron	
3	$2.32 \mathrm{E}+02$	$\mathrm{MeV} / \mathrm{mm}$	
4	$1.00 \mathrm{E}+00$	$\mathrm{keV} /(\mathrm{ug} / \mathrm{cm} 2)$	
5	$1.00 \mathrm{E}+00$	$\mathrm{MeV} /(\mathrm{mg} / \mathrm{cm} 2)$	
6	$1.00 \mathrm{E}+03$	$\mathrm{keV} /(\mathrm{mg} / \mathrm{cm} 2)$	
7	$4.66 \mathrm{E}+01$	$\mathrm{eV} /(1 \mathrm{E} 15 \mathrm{atoms} / \mathrm{cm} 2)$	
8	$1.33 \mathrm{E}-01$	$\mathrm{LSS} . \mathrm{reduced}$ unit	
0	$==5: \mathrm{MeV} /(\mathrm{mg} / \mathrm{cm} 2)$		

Uid indicates LET unit ID number $=0 . .8$ (0 : default $=[\mathrm{MeV} /(\mathrm{mg} / \mathrm{cm} 2)])$.
e.g.) $[\mathrm{keV} / \mu \mathrm{m}]=\operatorname{LET}[\mathrm{MeV} /(\mathrm{mg} / \mathrm{cm} 2)] * \operatorname{srLETCnvF}($ wSname, Uid $=2)$

Function List (1) Fundamental functions

Original list below is included in SRIMfit.xlsm

mark indicates most useful functions.

Category
Return type Func.name
params. type Param. Description
Func. Description
Return value Error conditions Comments

Category

Return type Func.name
params. type Param. Description

Func. Description
Return value Error conditions Comments

Work Sheet Look up (1) E <-> LETe,n,t						
V, D	srE2LETe			Look up E \rightarrow LETe [in Uid unit] ; Electric Stopping Power		
	WS	S	WS name	\#NUM!	Uid<0 \| >8	Uid invalid
	E	D	Beam E [MeV/u] as look-up key	\#N/A		E is out of range in the WS
	Uid	I	LET Unit ID (0..8) for the return value			
V, D	srE2LETn			Look up E \rightarrow LETn [in Uid unit] ; Nuclear Stopping Power		
	WS	S	WS name	\#NUM!	Uid<0 \| >8	Uid invalid
	E	D	Beam E [MeV/u] as look-up key	\#N/A		E is out of range in the WS
	Uid	I	LET Unit ID (0..8) for the return value			
V, D	srE2LETt			Look up E -> LETt [in Uid unit] ;Total= Nuclear+Electric Stopping Powe		
	WS	S	WS name	\#NUM!	Uid<0 \| >8	Uid invalid
	E	D	Beam E [MeV/u] as look-up key	\#N/A		E is out of range in the WS
	Uid	I	LET Unit ID (0..8) for the return value			

LET subscription $\{e|n| t\}$ indicates \{ electronic | nuclear | total = electric + nuclear \} Stopping Power

	srLETe2E	Look up LETe \rightarrow E [$\mathrm{MeV} / \mathrm{u}]$				
	WS	S	WS name	\#NUM!	Uid<0 \| >8	Uid invalid
	Lt	D	LETe [Uid] as look-up key	\#N/A		LETe is out of range in the WS
	Uid	I	LET Unit ID (0..8) for the look-up key			
	Ehl	I	$=\{+1 \mid-1\}=$ E-search from \{Ehigh\|Elow\} side			
V, D	srLETn2E			Look up LETn \rightarrow E [MeV/u]		
	WS	S	WS name	\#NUM!	Uid<0 \| >8	Uid invalid
	Lt	D	LETn [Uid] as look-up key	\#N/A		LETn is out of range in the WS
	Uid	I	LET Unit ID (0..8) for the look-up key			
	Ehl	I	$=\{+1 \mid-1\}=E-$ search from \{Ehigh\|Elow\} side			
V, D	srLETt2E			Look up LETt \rightarrow E [$\mathrm{MeV} / \mathrm{u}]$		
	WS	S	WS name	\#NUM!	Uid<0 \| >8	Uid invalid
	Lt	D	LETt [Uid] as look-up key	\#N/A		LETt is out of range in the WS
	Uid	I	LET Unit ID (0..8) for the look-up key			
	Ehl	I	$=\{+1 \mid-1\}=$ E-search from \{Ehigh\|Elow\} side			

Work Sheet Look up (2) E <-> Range

V, D	srE2Rng			Look up E \rightarrow Range [$\mu \mathrm{m}$]		
	WS	S	WS name	\#NUM!	$\mathrm{E}<0$	
	E	D	Beam E [MeV/u] as look-up key	\#N/A		E is out of range ($>$ Emax)
				=0	$\mathrm{E}=0$	
V, D	srRng2E			Look up Range \rightarrow E [$\mathrm{MeV} / \mathrm{u}$]		
	WS	S	WS name	\#NUM!	Rng<0	
	Rng	D	Range [$\mu \mathrm{m}$] as look-up key	\#N/A		Rng is out of range ($>\mathrm{Rmax}$)
				$=0$	Rng $=0$	

These two functions are important functions and are often used in the following combination functions.

Category

Return type	Func.name			Func. Description	
	params.	type	Param. Description	Return value Error conditions	Comments

Work	eet Look up	(3)	$E\langle-\rangle$ Straggling			
V, D	srE2StLng			Look up E	Straggling Longit	dinal [$\mu \mathrm{m}$]
	WS	S	WS name	\#NUM!	E<0	
	E	D	Beam E [MeV/u] as look-up key	\#N/A		E is out of range ($>$ Emax)
				$=0$	$\mathrm{E}=0$	
V, D	srE2StLtr			Look up E	Straggling Lateral	[$\mu \mathrm{m}]$
	WS	S	WS name	\#NUM!	E<0	
	E	D	Beam $\mathrm{E}[\mathrm{MeV} / \mathrm{u}]$ as look-up key	\#N/A		E is out of range ($>$ Emax)
				$=0$	$\mathrm{E}=0$	
V, D	srStLng2E			Look up S	aggling Longitudinal	$\rightarrow \mathrm{E}[\mathrm{MeV} / \mathrm{u}]$
	WS	S	WS name	\#NUM!	Strg<0	
	Strg	D	Strag. Long. [$\mu \mathrm{m}$] as look-up key	\#N/A		Strg is out of range (>StLngmax)
				$=0$	Strg=0	
V, D	srStLtr2E			Look up S	aggling Lateral -> E	[$\mathrm{MeV} / \mathrm{u}$]
	WS	S	WS name	\#NUM!	Strg<0	
	Strg	D	Strag. Later. [$\mu \mathrm{m}$] as look-up key	\#N/A		Strg is out of range (>StLtrmax)
				$=0$	Strg=0	

Gas Target	rget: "Stand		Pressure \& Temperature			
	"Standard"is at P=srInfoTrgPtbl() and at			TTtb/()	the WS is calc	lated by SRIM-2013
V, D	srThkStd			Conversion coeff. for the standard P \& T		
	WS	S	WS name for Gas Target	\#NUM!	WSく>Gas	WS is not for Gas Target
	Pa	D	Gas Pressure [Pa]	\#NUM!	$\begin{aligned} & \mathrm{Pa}<0 \mathrm{~Pa} \mid \mathrm{dgC}<0 \\ & \mathrm{~K} \end{aligned}$	
	dgC	D	Gas Temperature [${ }^{\circ} \mathrm{C}$]	$=(\mathrm{Pa} / \mathrm{P} 0)$	273.15+T0)/(273.15	+dgC) <-- This is the coeff.

Concerning Gas-Target work sheet

Gas functions calculate a range thickness in the gas as following formula ;
Thick $[\mu \mathrm{m}] @(\mathrm{P}, \mathrm{T})=\operatorname{srE2Rng}(\mathrm{WS}, \mathrm{E}) / \operatorname{srThkStd}(\mathrm{WS}, \mathrm{P}, \mathrm{T})$

SRIMfit Function List (2a) Combination functions

< Notation for Parameters >

WS1,WS2 S WSname
Eu D Beam Energy [MeV/u]
Et D Beam Energy [MeV] dEu D Beam Energy Loss [MeV/u] dEt D Beam Energy Loss [MeV]
Tum,Tmm D Thickness $[\mu \mathrm{m}] \mid[\mathrm{mm}]$
$\mathrm{Pa} D$ Gas Pressure [Pa] $\operatorname{dgC} D$ Gas Temperature [degC]
< reason why _eq_() function returns '\#N/A' error >
case-1) Eu10 > Emax out of E table in WS1
case-2) Eu11 < $0 \quad$ Eu20, Th2 becomes indefinite
case-3) Et11 > Et20
case-5) dEt1 > Et20
case-8)
case-9)
case-11)
case-12) dEu2max < dEu1
case-14) dE2 ixE search error

| Category
 Return type Func.name | | | Func. Description | |
| :--- | :--- | :--- | :--- | :--- | :--- |

Combination Func. (2a) equivalent $E\langle-\rangle$ Rng

V, D	srEnew			Beam $\mathrm{E}[\mathrm{MeV} / \mathrm{u}]$ AFTER passing through $\operatorname{Th}[\mu \mathrm{m}]$ of the target		
	WS	S	WSname for Eu10 \& Th1	\#NUM!	Eu10<=0	
	Eu10	D	$\mathrm{E}[\mathrm{MeV} / \mathrm{u}]$ before passing Th1	\#N/A	-Th >Rmax	
	Th1	D	Target Thickness [$\mu \mathrm{m}$]	=0	Eu10=0 \| Th1 $>=$ Rng(Eu10)	
				=Eu10	Th1 $=0$	
			=srEold(Eu11,Th1)		Th1<0	same as srEold()

As function	As calculation
parameter	assumption
return	look-up key

(Equivalent Equations)
return look up key
srEnew(WS,Eu10,Th1) \{

	before	through	after
	Eold	Thick	Enew
	$\mathrm{MeV} / \mathrm{u}$	$\mu \mathrm{m}$	$\mathrm{MeV} / \mathrm{u}$
WS1	Eu10	Th1	Eu11
prm.	prm.	prm.	ret.

R10= srE2Rng(WS,Eu10)
if((R11= R10 - Th1)<=0) return (0)
E11u= srRng2E(WS,R11)
return(E11u)
\}

	before	through	after
	Eold $\mathrm{MeV} / \mathrm{u}$	Thick	Enew
	$\mu \mathrm{m}$	$\mathrm{MeV} / \mathrm{u}$	
WS1	Eu10	Th1	Eu11
prm.	ret.	prm.	prm.

```
srEold(WS,Eu11,Th1) {
    R11= srE2Rng(WS,Eu11)
    R10= R11 + Th1
    Eu10= srRng2E(WS,R10)
    return( Eu10 )
```

\}

	before	gives
	Eold	Range
	$\mathrm{MeV} / \mathrm{u}$	$\mu \mathrm{m}$
WS1	Eu10	Rng1
prm.	prm.	
WS2	Eu20	Rng2
prm.	ret.	=Rng1

```
srRng_eq_Eold(WS1,WS2,Eu10) {
            R10= srE2Rng(WS1,Eu10)
            R20=R10
            Eu20= srRng2E(WS2,R20)
            return( Eu20 )
}
```

V, D	srEnew_eq_Th				Enew [$\mathrm{MeV} / \mathrm{u}$] equivalent thickness [$\mu \mathrm{m}$]	
	WS1 S		WSname for Eu10 \& Th1		\#NUM!	Eu10<=0 \| Th1<0
	WS2 S		WSname for return Thick		\#N/A	Th1>=Rng(Eu10) case-2) Eu20 becomes indefinite
	Eu10		$\mathrm{E}[\mathrm{MeV} / \mathrm{u}]$ before passing Th1		\#N/A	case-1), -3), -8), -9)
	Th1		Target Thickness [$\mu \mathrm{m}$]		=0	Th1=0 as Eu20=Eu10
	before	through	after	Etotal	srEnew_eq_Th(WS1,WS2,Eu10,Th1) \{	
	Eold	Thick	Enew	Enewt	Eu11= srEnew(WS1,Eu10,Th1)	
	$\mathrm{MeV} / \mathrm{u}$	$\mu \mathrm{m}$	$\mathrm{MeV} / \mathrm{u}$	MeV	if(Eu11 <= 0) return(\#N/A)	
WS1	Eu10	Th1	Eu11	Et11	Eu20= Eu10	
prm.	prm.	prm.			R20 $=$ srE2Rng(WS2,Eu20)	
WS2	Eu20	Th2	Eu21	Et21	Eu21= Eu11	
prm.	=Eu10	ret.	=Eu11		R21 = srE2Rng(WS2,Eu21)	
					Th2 = R20-R21	
					return(Th2)	
					\}	

V, D	srEnewt_eq_Th		
	WS1	S	WSname for Eu10 \& Th1
	WS2	S	WSname for return Thick
	Eu10	D	$\mathrm{E}[\mathrm{MeV} / \mathrm{u}]$ before passing Th1
	Th1	D	Target Thickness [$\mu \mathrm{m}$]

Enewt [MeV] equivalent thickness [$\mu \mathrm{m}$]
\#NUM! Eu10<=0 | Th1<0
\#N/A Th1>=Rng(Eu10) case-2) Eu20 becomes indefinite \#N/A case-1), -3), -8), -9)
$=0 \quad$ Th $1=0 \quad$ as Eu20=Eu10

	before	through	after	Etotal
WS1	Eu10	Th1	Eu11	Et11
prm.	prm.	prm.		
WS2	Eu20	Th2	Eu21	Et21
prm.	=Eu10	ret.		=Et111

| srEnewt_eq_Th(WS1,WS2,Eu10,Th1) $\{$ |
| :--- | :--- |
| A1 = srInfoIonA(WS1) |
| A2 = srInfoIonA(WS2) |
| Eu11 = srEnew(WS1,Eu10,Th1) |
| Et11 = Eu11*A1 |
| Eu20 = Eu10 |
| if(Et11 > Eu20*A2) return(\#N/A) |
| R20 = srE2Rng(WS2,Eu20) |
| Et21 = Et11 |
| Eu21 = Et21/A2 |
| R21 = srE2Rng(WS2,Eu21) |
| Th2= R20 - R21 |
| return(Th2) |
| \} |

As function	As calculation
parameter	assumption
return	look-up key

Category					
Return type	Func.name				
	params.	type	Param. Description	Return value Error conditions	Comments

V, D	srDEt_eq_Th			dEt [MeV]	equivalent Thickness [$\mu \mathrm{m}$]
	WS1	S	WSname for Eu10 \& Th1	\#NUM!	Eu10<=0 \| Th1<0
	WS2	S	WSname for return Thick	\#N/A	Th1>=Rng(Eu10) case-2) Eu20 becomes indefinite
	Eu10	D	$\mathrm{E}[\mathrm{MeV} / \mathrm{u}]$ before passing Th1	\#N/A	case-1), -5), -8), -9)
	Th1	D	Target Thickness [$\mu \mathrm{m}$]	=Eu11	Th1=0 as Eu20=Eu10

	before	through	after	Etotal	Eloss	E loss
WS1	Eu10	Th1	Eu11	Et11	dEu1	dEt1
prm.	prm.	prm.				
WS2	Eu20	Th2	Eu21	Et21	dEu2	dEt2
prm.	E Eu10	ret.				=dEt1

	before	through	after	Etotal	Eloss	Eloss
	Eold	Thick	Enew	Enewt	dEu	dEt
	$\mathrm{MeV} / \mathrm{u}$	$\mu \mathrm{m}$	$\mathrm{MeV} / \mathrm{u}$	MeV	$\mathrm{MeV} / \mathrm{u}$	MeV
WS1	Eu10	Th1	Eu11	Et11	dEu 1	dEt 1
prm.	prm.	prm.				
WS2	Eu20	Th2	Eu21	Et21	dEu22	dEt2
prm.	ret.	=Th1			IEu1	

V,D srDEt_eq_Eold

WS1	S	WSname for Eu10 \& Th1
WS2	S	WSname for return Eold
Eu10	D	$\mathrm{E}[\mathrm{MeV} / \mathrm{u}]$ before passing Th1
Th1	D	Target Thickness $[\mu \mathrm{m}]$
Ehl	I	$=\{+1 \mid-1\}=\mathrm{E}-$ search from \{Ehigh\|Elow\} side

	before	through	after	Etotal	Eloss	Eloss
	Eold	Thick	Enew	Enewt	dEu	dEt
	$\mathrm{MeV} / \mathrm{u}$	$\mu \mathrm{m}$	$\mathrm{MeV} / \mathrm{u}$	MeV	$\mathrm{MeV} / \mathrm{u}$	MeV
WS1	Eu10	Th1	Eu11	Et11	dEu 1	dEt 1
prm.	prm.	prm.				
WS2	Eu20	Th2	Eu21	Et21	dEu2	dEt2
prm.	ret.	=Th1				=dEt11

$\mathrm{dEt}[\mathrm{MeV} / \mathrm{u}]$ equivalent Eold $[\mathrm{MeV} / \mathrm{u}]$ \#NUM! Eu10<=0 | Th1<0 Th1>=Rng(Eu10) is acceptable \#N/A case-1), -8), -11), -12), -14)
note) return value(Eu20) has error of a few [\%]
because this is a linear interpolation between E vs. $d E$ not between E vs. Range

```
srDEu_eq_Eold(WS1,WS2,Eu10,Th1) \{
    Eu11= srEnew(WS1,Eu10,Th1)
    dEu1=Eu10-Eu11
    Th2= Th1
    Eu20stop= srRng2E(WS2,Th2)
    ~ sr_dEfpk(-1) : find dEu2 peak from Emax side ~
    ~ \(->\) then get dEu2pk \& EdEu2pk ~
    if( dEu2pk > Eu20stop) \{
        dEu2max= dEu2pk; EdEu2max= EdEu2pk
    \}else\{ dEu2max=EdEu2max= Eu20stop \}
    if(dEu2max <dEu1) return( N/A ) : No Answer
    if(dEu2max = dEu1) : Only One Answer
        return( Eu20= EdEu2max )
    dEu2= dEu1
    ~ sr_dE2ixE( ) : find dEu2 for all Eu20 ~ \(^{\text {~ }}\)
    ~ calculating Eu20 \(->\) dEu2= Eu20 - Enew(Eu20,Th2) ~
    ~ sr_dE2ip() : interpolation at found dEu2 ~
    ~ using the calculated E vs \(\mathrm{dE}=\mathrm{E}-\) Enew() table \({ }^{\text {~ }}\)
    Eu20 = interpolated value at found dEu2
    return (Eu20)
\}
```

srDEt_eq_Eold(WS1,WS2,Eu10,Th1) \{
A1 = srInfolonA(WS1)
A2 $=$ srInfolonA(WS2)
Eu11= srEnew(WS1,Eu10,Th1)
$\mathrm{dEt} 1=(\mathrm{Eu} 10-\mathrm{Eu} 11) * \mathrm{~A} 1$
Th2 $=$ Th1
Eu20stop= srRng2E(WS2,Th2)
${ }^{\text {sr_dEfpk }(-1)}$: find dEu2 peak from Emax side ${ }^{\text {~ }}$
~ \rightarrow then get dEu2pk \& EdEu2pk ~
if(dEu2pk > Eu20stop) \{
dEu2max= dEu2pk; EdEu2max=EdEu2pk
\}else\{ dEu2max=EdEu2max=Eu20stop \}
dEt2max= dEu2max*A2
if(dEt2max < dEt1) return(N/A) : No Answer
if(dEt2max = dEt1) : Only One Answer
return(Eu20= EdEu2max)
$\mathrm{dEt} 2=\mathrm{dEt} 1$
dEu2 $=\mathrm{dEt} 2 / \mathrm{A} 2$
~ sr_dE2ixE() : find dEu2 for all Eu20 ~
~ calculating Eu20 \rightarrow dEu2 $=$ Eu20 - Enew (Eu20,Th2) ~
~ sr _dE2ip() : interpolation at found dEu2 ${ }^{\sim}$
~ using the calculated E vs $\mathrm{dE}=\mathrm{E}-\mathrm{Enew}()$ table ~
Eu20 = interpolated value at found dEu2
return $(\mathrm{Et} 20=\mathrm{Eu} 20 * \mathrm{~A} 2$)

SRIMfit Function List (2b) Combination functions for Gas Target

< Notation for Parameters >
Tmm D Thickness in [mm] unit Pa D Gas Pressure [Pa] $\operatorname{dgC} D$ Gas Temperature [${ }^{\circ} \mathrm{C}$ degC] other param.s are same as _eq_() func.

< reason why _eq_Gas() function returns '\#N/A' error > \#NUM! WSく>Gas WS is not for Gas Target other reasons are same as _eq_() func.

As function	As calculation
parameter	assumption
return	look-up key

Concerning Gas-Target combination functions

- Gas thickness is in the unit of [mm]
- Gas pressure [Pa] and temperature $\left[{ }^{\circ} \mathrm{C}\right]$ need to specified. Others are same as solid-target functions.

Category						
Return type	Func.name					
		params.	type	Param. Description	Return value Error conditions	Comments

Combination Func. (2b) equivalent $E\langle-\rangle$ Rng

As function	As calculation
parameter	assumption

Func.List(2b)
return look-up key

Category
Return type Func.name
Func. Description
params.
type
Param. Description Return value Error conditions Comments
V, D srRng_eq_EoldGas() is not implemented. Please use srRng_eq_Eold().

V, D	srEnew_eq_ThGas			Enew [$\mathrm{MeV} / \mathrm{u}$] equivalent thickness [mm]						
	WS1	S	WSnameGas for Eu10~dgC1	\#NUM!		WS1,WS2く>Gas		WS1,2 are not for Gas Target		
	WS2	S	WSnameGas for $\mathrm{Pa} 2 \sim \mathrm{dgC} 2$	\#NUM!		Eu10<=0 \| Th1<0				
	Eu10	D	$\mathrm{E}[\mathrm{MeV} / \mathrm{u}]$ after passing Th1	\#N/A		Th1>=Rng(Eu10)		case-2) Eu20 becomes indefinite		
	Tmm1	D	Gas Trg1 Thickness [mm]	\#N/A		case-1), -3), -8), -9)				
	Pa 1	D	Gas Trg1 Pressure [Pa]	$=0$		Th1 $=0$		as Eu20=Eu10		
	dgC1	D	Gas Trg1 Temperature [${ }^{\circ} \mathrm{C}$]							
	Pa 2	D	Gas Trg2 Pressure [Pa]		before	through			after	Etotal
	dgC2	D	Gas Trg2 Temperature [${ }^{\circ} \mathrm{C}$]		Eold	Thick			Enew	Enewt
					$\mathrm{MeV} / \mathrm{u}$	mm	Pa	${ }^{\circ} \mathrm{C}$	$\mathrm{MeV} / \mathrm{u}$	MeV
				WS1	Eu10	Th1	Pa1	dgC1	Eu11	Et11
				prm.	prm.	prm.	prm.	prm.		
				WS2	Eu20	Th2	Pa 2	dgC2	Eu21	Et21
				prm.	=Eu10	ret.	prm.	prm.	=Eu11	

V, D	srEnewt_eq_ThGas		
	WS1	S	WSnameGas for Eu10~dgC1
	WS2	S	WSnameGas for $\mathrm{Pa} 2 \sim \mathrm{dgC} 2$
	Eu10	D	$\mathrm{E}[\mathrm{MeV} / \mathrm{u}]$ after passing Th1
	Tmm1	D	Gas Trg1 Thickness [mm]
	Pa 1	D	Gas Trg1 Pressure [Pa]
	dgC1	D	Gas Trg1 Temperature [${ }^{\circ} \mathrm{C}$]
	Pa 2	D	Gas Trg2 Pressure [Pa]
	$\mathrm{dgC2}$	D	Gas Trg2 Temperature [${ }^{\circ} \mathrm{C}$]

Enewt [MeV] equivalent thickness [mm]
\#NUM! WS1,WS2<>Gas WS1,2 are not for Gas Target
\#NUM! Eu10<=0 | Th1<0
\#N/A Th1>=Rng(Eu10) case-2) Eu20 becomes indefinite
\#N/A case-1), -3), -8), -9)
$=0$ Th1 $=0$ as Eu20=Eu10

| | before | through | | | after | Etotal |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| WS1 | Eu10 | Th1 | Pa1 | dgC1 | Eu11 | Et11 |
| prm. | prm. | prm. | prm. | prm. | | |
| WS2 | Eu20 | Th2 | Pa2 | dgC2 | Eu21 | Et21 |
| prm. | =Eu10 | ret. | prm. | prm. | | =Et11 |

srEnew_eq_ThGas(WS1,WS2,Eu10,Tmm1,
Pa1,dgC1,Pa2,dgC2) \{
Th1 $=$ Tmm1 * $1000 *$ srThkStd(WS1,Pa1,dgC1)
Eu11= srEnew(WS1,Eu10,Th1)
if(Eu11 <= 0) return (\#N/A)
Eu20= Eu10
R20 $=$ srE2Rng(WS2,Eu20)
Eu21=Eu11
R21 $=$ srE2Rng(WS2,Eu21)
Th2 $=$ R20 - R21
Tmm2 $=$ Th2 / (1000 * srThkStd(WS2,Pa2,dgC2)) return (Tmm2)
\}
srEnewt_eq_ThGas(WS1,WS2,Eu10,Tmm1, Pa1,dgC1,Pa2,dgC2) \{
A1 = srInfolonA(WS1)
A2 $=$ srInfolonA(WS2)
Th1 $=\operatorname{Tmm} 1 * 1000 * \operatorname{srThkStd}(W S 1, \mathrm{~Pa} 1, \mathrm{dgC} 1)$
Eu11 = srEnew(WS1,Eu10,Th1)
Et11=Eu11*A1
$\mathrm{Eu} 20=\mathrm{Eu} 10$
if(Et11 >Eu20*A2) return(\#N/A)
R20 $=$ srE2Rng(WS2,Eu20)
Et21=Et11
Eu21 $=\mathrm{Et} 21 / \mathrm{A} 2$
R21 $=$ srE2Rng(WS2,Eu21)
Th2 $=$ R20 - R21
Tmm2 $=$ Th2 / ($1000 * \operatorname{srThkStd}(W S 2, P a 2, d g C 2))$
return (Tmm2)
\}

Enewt $[\mathrm{MeV} / \mathrm{u}]$ equivalent Eold $[\mathrm{MeV} / \mathrm{u}]$
\#NUM! WS1,WS2<>Gas WS1,2 are not for Gas Target \#NUM! Eu10<=0 | Th1<0
\#N/A Th1>=Rng(Eu10) case-2) Eu20 becomes indefinite \#N/A case-1), -8), -9)
=Eu11 Th1=0 as Eu20=Eu21=Eu11=Eu10

	before	through			after	E total
WS1	Eu10	Th1	Pa1	dgC1	Eu11	Et11
prm.	prm.	prm.	prm.	prm.		
WS2	Eu20	Th2	Pa2	dgC2	Eu21	Et21
prm.	ret.	=Th1	prm.	prm.		EEt11

srEnewt_eq_EoldGas(WS1,WS2,Eu10,Tmm1,
Pa1,dgC1,Pa2,dgC2) \{
A1 = srInfolonA(WS1)
A2 $=$ srInfolonA(WS2)
Th1 $=$ Tmm1 $* 1000 *$ srThkStd(WS1,Pa1,dgC1)
Eu11= srEnew(WS1,Eu10,Th1)
Et11=Eu11*A1
Th2 $=$ Tmm1 $* 1000 *$ srThkStd(WS2,Pa2,dgC2)
Et21= Et11
if(Et21==0) Eu20= srRng2E(WS2,Th2)
else Eu20= srEold(WS2,Eu21,Th2)
return(Eu20)
\}

As function	As calculation
parameter	assumption
return	look-up key

Category					
Return type	Func.name				
	params.	type	Param. Description	Return value Error conditions	Comments

V, D srDEu_eq_ThGas is equivalent to srEnew_eq_ThGas() $\mathrm{dEu}[\mathrm{MeV} / \mathrm{u}]$ equivalent Thickness [mm]
WS1 S WSnameGas for Eu10~dgC1 \#NUM! WS1,WS2<>Gas WS1,2 are not for Gas Target
WS2 S WSnameGas for $\mathrm{Pa} 2 \sim \mathrm{dgC} 2$
Eu10 $\quad D \quad E[M e V / u]$ after passing Th1
Tmm1 D Gas Trg1 Thickness [mm]
Pa1 D Gas Trg1 Pressure $[\mathrm{Pa}]$
$\mathrm{dgC1} \quad D \quad$ Gas $\operatorname{Trg} 1$ Temperature [${ }^{\circ} \mathrm{C}$]
$\mathrm{Pa} 2 \quad D$ Gas Trg2 Pressure $[\mathrm{Pa}]$
$\mathrm{dgC} 2 \quad D$ Gas Trg2 Temperature [${ }^{\circ} \mathrm{C}$]

	before	through			after	Etotal	Eloss	Eloss
	Eold	Thick			Enew	Enewt	dEu	dEt
	$\mathrm{MeV} / \mathrm{u}$	mm	Pa	${ }^{\circ} \mathrm{C}$	$\mathrm{MeV} / \mathrm{u}$	MeV	$\mathrm{MeV} / \mathrm{u}$	MeV
WS1	Eu10	Th1	$\mathrm{Pa1}$	dgC1	Eu11	Et 11	dEu 1	dEt 1
prm.	prm.	prm.	prm.	prm.				
WS2	Eu20	Th2	Pa 2	dgC2	Eu21	Et21	dEu 2	$\mathrm{dEt2}$
prm.	E Eu10	ret.	prm.	prm.	=Eu11		=dEu1	

V, D srDEt_eq_ThGas
WS1 S WSnameGas for Eu10~dgC1
WS2 S WSnameGas for $\mathrm{Pa} 2 \sim \mathrm{dgC} 2$
Eu10 $\quad D \quad E[M e V / u]$ after passing Th1
Tmm1 D Gas Trg1 Thickness [mm]
Pa1 D Gas Trg1 Pressure [Pa]
dgC1 D Gas Trg1 Temperature [${ }^{\circ} \mathrm{C}$]
$\mathrm{Pa} 2 \quad D$ Gas Trg2 Pressure $[\mathrm{Pa}]$
$\operatorname{dgC} 2 \quad D \quad$ Gas Trg2 Temperature $\left[{ }^{\circ} \mathrm{C}\right]$
$\mathrm{dEt}[\mathrm{MeV}$] equivalent Thickness [mm]
\#NUM! WS1,WS2く>Gas WS1,2 are not for Gas Target \#NUM! Eu10<=0 | Th1<0
\#N/A Th1>=Rng(Eu10) case-2) Eu20 becomes indefinite
\#N/A case-1), -5), -8), -9)
=Eu11 Th1=0 as Eu20=Eu10

	before	through			after	Etotal	Eloss	E loss
WS1	Eu10	Th1	Pa1	dgC1	Eu11	Et11	dEu1	dEt1
prm.	prm.	prm.	prm.	prm.				
WS2	Eu20	Th2	Pa2	dgC2	Eu21	Et21	dEu2	dEt2
prm.	EEu10	ret.	prm.	prm.				=dEt1

srDEu_eq_ThGas(WS1,WS2,Eu10,Tmm1,
Pa1,dgC1,Pa2,dgC2) \{
Th2= srEnew_eq_ThGas(WS1,WS2,Eu10,Tmm1,
Pa1,dgC1,Pa2,dgC2) \{
return(Th2)
\}
$\because E u 20=E u 10$
\therefore dEu1 $=(E u 10-E u 11)=\mathrm{dEu} 2=(E u 10-E u 21)$
\therefore Eu21=Eu11
\therefore equivalent to srEnew_eq_Th()
srDEt_eq_ThGas(WS1,WS2,Eu10,Tmm1, Pa1,dgC1,Pa2,dgC2) \{
A1 = srInfolonA(WS1)
A2 $=$ srInfolonA(WS2)
Th1 $=$ Tmm1 * $1000 * \operatorname{srThkStd}(W S 1, \mathrm{~Pa} 1, \mathrm{dgC} 1)$
Eu11 $=$ srEnew(WS1,Eu10,Th1)
dEt1= (Eu10-Eu11)*A1
$\mathrm{Eu} 20=\mathrm{Eu} 10$
R20 $=$ srE2Rng(WS2,Eu20)
dEt2= dEt1
dEu2= dEt2/A2
Eu21 $=\mathrm{Eu} 20-\mathrm{dEu} 2$
R21 = srE2Rng(WS2,Eu21)
Th2 = R20 - R21
Tmm2 $=$ Th2 $/(1000 * \operatorname{srThkStd}($ WS2,Pa2,dgC2 $))$
return (Tmm2)
\}

As function	As calculation
parameter	assumption
return	look-up key

Category

Return type	Func.name	type	Param. Description
	params.		
V, D	srDEu_eq_EoldGas		
	WS1	S	WSnameGas for Eu10~dgC1
	WS2	S	WSnameGas for $\mathrm{Pa} 2 \sim \mathrm{dgC} 2$
	Eu10	D	$\mathrm{E}[\mathrm{MeV} / \mathrm{u}]$ after passing Th1
	Tmm1	D	Gas Trg1 Thickness [mm]
	Ehl	I	$=\{+1 \mid-1\}=E-$ search from \{Ehigh\|Elow\} side
	Pa1	D	Gas Trg1 Pressure [Pa]
	dgC1	D	Gas Trg1 Temperature [${ }^{\circ} \mathrm{C}$]
	Pa 2	D	Gas Trg2 Pressure [Pa]
	dgC2		Gas Trg2 Temperature [${ }^{\circ} \mathrm{C}$]

Func. Description
Return value Error conditions Comments

```
\(\mathrm{dEu}[\mathrm{MeV} / \mathrm{u}]\) equivalent Eold \([\mathrm{MeV} / \mathrm{u}]\)
\#NUM! WS1,WS2<>Gas WS1,2 are not for Gas Target \#NUM! Eu10<=0 | Th1<0
Th1>=Rng(Eu10) is acceptable
\#N/A case-1), -8), -11), -12), -14)
```

note) return value(Eu20) has error of a few [\%]
because this is a linear interpolation between E vs. $d E$ not between E vs. Range

	before	through			after	Etotal	Eloss	Eloss
	Eold	Thick			Enew	Enewt	dEu	dEt
	$\mathrm{MeV} / \mathrm{u}$	mm	Pa	${ }^{\circ} \mathrm{C}$	$\mathrm{MeV} / \mathrm{u}$	MeV	$\mathrm{MeV} / \mathrm{u}$	MeV
WS1	Eu10	Th1	Pa 1	dgC 1	Eu11	Et11	dEu1	dEt1
prm.	prm.	prm.	prm.	prm.				
WS2	Eu20	Th2	Pa2	dgC 2	Eu21	Et21	dEu2	dEt2
prm.	ret.	=Th1	prm.	prm.			=dEu1	

"MySRIMwb.xlsx" data-base file should be prepared manually as your own purpose.

- The installer includes a sample data-base file.
- Other samples are available in SRIMfit download page.
- Or you can make your own data-base file as following instruction.

How to prepare your own MySRIMwb

Step1) Make a stopping/range table (say "SRIMoutput.txt") using SRIM-2013 code.
Step2) Convert the table file to MySRIMwb formatted work sheet using "srOut2WsE.xlsm" utility.
Step3) Pick and choose from the work sheets and arrange your own MySRIMwb.

Instructions for MySRIMwb

- Please do NOT change the row \& column number in a work sheet.
- Yellow Cells : fill in values copied from SRIM-2013 output file.
- Some of the Boxed Cells contains formula.
- Other cells are available for writing any memo note.
- How many sheets are needed in the MySRIMwb.xlsx book file ?
(Number of WS needed) $=($ Num. of Beams) x (Num. of Target) for your purpose.
- Does the WSname has some restriction ?

No, but it is better to use the following notation so that it would be easy to understand. e.g.) "srim40Ar_Kapton" = "srim" + "Beam" + "_" + "Target"

- Each WSname should be identical in the book file.

There is no restriction for the number of sheet in the book. (See Excel system restriction)
Order of sheets is not important as the SRIMfit functions refer the sheet as WSname.

[Step1] SRIM-2013 calculation

Run the SRIM-2013 code and click "Stopping / Rage Tables"

- Ion Mass "A [amu]" is better to use an "integer number" for the isotope.
- Ion Energy Range [keV] is recommended as ; eg.) A=84

Lowest : $10 \mathrm{eV} / \mathrm{u} * 84=0.84 \mathrm{keV}$, Highest : $1 \mathrm{GeV} / \mathrm{u} * 84=84,000,000 \mathrm{keV}$
Small Lowest value is important for a precise calculation near beam stopping. Highest value should be enough larger than the Bragg Peak energy.
Energy steps are automatically determined by SRIM-2013 code.

Ion = Krypton [36] , Mass $=84 \mathrm{amu}$

Target Density $=1.4200 \mathrm{E}+00 \mathrm{~g} / \mathrm{cm} 3=8.7227 \mathrm{E}+22$ atoms $/ \mathrm{cm} 3$ $=======$ Target Composition $========$
Atom Atom Atomic Mass
Name Numb Percent Percent
$\begin{array}{lllll}H & 1 & 025.64 & 002.64\end{array}$
$\begin{array}{llll}\mathrm{C} & 6 & 056.41 & 069.11 \\ \mathrm{~N} & 7 & 005.13 & 007.33\end{array}$
$\begin{array}{llll}\mathrm{O} & 8 & 012.82 & 020.92\end{array}$
Bragg Correction $=-7.20 \%$
Stopping Units $=\mathrm{MeV} /(\mathrm{mg} / \mathrm{cm} 2)$
See bottom of Table for other Stopping units

$$
\text { lon } \quad \mathrm{dE} / \mathrm{dx} \quad \mathrm{dE} / \mathrm{dx} \text { Projected Longitudinal Lateral }
$$

$$
90.00 \mathrm{keV} \quad 1.928 \mathrm{E}+00 \quad 7.601 \mathrm{E}+00 \quad 759 \mathrm{~A} \quad 136 \mathrm{~A} \quad 117 \mathrm{~A}
$$ $100.00 \mathrm{keV} \quad 2.032 \mathrm{E}+00 \quad 7.556 \mathrm{E}+00 \quad 828 \mathrm{~A} \quad 146 \mathrm{~A} \quad 126 \mathrm{~A}$ Print Close

- Target Description ; Compound target material is possible. If the target is a Gas material, check "Gas Tgt." and specify an appropriate density at a certain temperature and pressure.
- Stopping power unit MUST BE "MeV/(mg/cm2)".
- Click "Calculate Table" then a text file named as "Target Description" box is created in the ¥SRIM Outputs folder.

[Step2-a] convert "SRIMoutput.txt" to SRIMwb format

[1] Open "srOut2WsE.xlsm" and show "conv.Txt" sheet.

Note) Please do not change the contents of "_wsForm_" sheet, because the macro refers it as a prototype format for the new WS.
[2] Push "Start Txt conversion" button and Select the previously made "SRIMoutput.txt" file.
Some sample files for the "SRIMoutput.txt" are included in this folder.

[3] After the conversion finished, a new sheet will be appeared.

(1) change the name of the work sheet.
(2) check the "row\#" of Emin and Emax.
(3) fill in the cells of Target name short- and long-name.
(4) If it is Gas target, fill in appropriate values for Ptbl and Ttbl. They are the Pressure $[\mathrm{Pa}]$ and Temperature [${ }^{\circ} \mathrm{C}$], respectively, when you specified the Density of the Gas for SRIM-2013 calculation.
(5) fill in corded information.

(6. (7) check the curves in two graphs are continuous.

If there are some bends, please check and compare the energy- $\mathrm{dE} / \mathrm{dX}$-range-straggling table between this sheet and SRIMoutput.txt.

[Step2 -b] convert "SRIMout.xlsx" (CSV file) to SRIMwb format

If you have an Excel book (like "SRIMout_*.xlsx") which contains many "SRIMoutput.txt" files, the following utility is convenient.

Some sample files for the "SRIMout.xslx" are included in this folder.

[1] Open "srOut2WsE.xlsm" and show "conv.Csv" sheet.

[2] Push "Start CSV conversion" button and Select the "SRIMout * .xlsx" file.
All sheets included in the "SRIMout *.xlsx" will be converted.
As it takes time, please wait for a while.
[3] After the conversion finished, new sheets will be appeared.

[4] Edit the new sheets.

This procedure is same as mentioned before.

[Step3] arrange and check MySRIMwb.xlsx

[1] Work flow for arranging MySRIMwb

First, prepare a temporary SRIMwb book named, for example, "newSRIMwb.xlsx".
Here, a different file name from "MySRIMwb.xlsx" is needed as the Excel can not doubly open
files with same file name. You can make it by (1)a coping "MySRIMwb.xlsx" from the system AddIn folder, or by (1)b downloading from SRIMfit Home Page.
(2) copy new sheet created in Step2) from "srOut2WsE.xlsm" to the temporary book.

Because a macro code included in the "srOut2WsE.xlsm" is not needed.
(3) Check \& arrange the content of the temporary book by using "3_Install_check.xlsm".
(4) Rename the temporary book as "MySRIMwb.xslx"
(5) and copy it into the system AddIn folder as a privileged user mode.

[2] Arrange and check the temporary book (3)

You can arrange the temporary SRIMwb book named "newSRIMwb.xlsx".
You can pick and choose needed sheets, and eliminate others.
A minimum number of sheets will speed up for starting Excel program.
In order to check the contents of the temporary book,
a macro included book of "3_Install_check.xlsm" included in the "_Install folder" is available.

[2] Arrange and check the temporary book (3) (cont.)

Open a macro included book of "3_Install_check.xlsm" and show "eg11Macro Info" sheet. push "change MySRIMwb" button (1), and select new SRIMwb of "newSRIMwb.xlsx".
Then the macro information listed in this sheet will change to the new one.

You can change back to the default "MySRIMwb.xIsx" when you push (2) button. or you restart Excel system.
[3] Rename (4) and copy (5)

(4) Rename the temporary book of "newSRIMwb.xlsx" as "MySRIMwb.xslx"
(5) and copy it into the system AddIn folder as a privileged user mode.

For the detail, please see "Installation manual"

That's it.
I would be grateful if this SRIMfit may help you.

Sincerely Yours,
Industrial Application Research Team,
RIKEN Nishina Center for Accelerator-Based Science, Japan

